Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Dev Biol ; 12(2)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38651456

RESUMO

During their biosynthesis, Sonic hedgehog (Shh) morphogens are covalently modified by cholesterol at the C-terminus and palmitate at the N-terminus. Although both lipids initially anchor Shh to the plasma membrane of producing cells, it later translocates to the extracellular compartment to direct developmental fates in cells expressing the Patched (Ptch) receptor. Possible release mechanisms for dually lipidated Hh/Shh into the extracellular compartment are currently under intense debate. In this paper, we describe the serum-dependent conversion of the dually lipidated cellular precursor into a soluble cholesteroylated variant (ShhC) during its release. Although ShhC is formed in a Dispatched- and Scube2-dependent manner, suggesting the physiological relevance of the protein, the depalmitoylation of ShhC during release is inconsistent with the previously postulated function of N-palmitate in Ptch receptor binding and signaling. Therefore, we analyzed the potency of ShhC to induce Ptch-controlled target cell transcription and differentiation in Hh-sensitive reporter cells and in the Drosophila eye. In both experimental systems, we found that ShhC was highly bioactive despite the absence of the N-palmitate. We also found that the artificial removal of N-terminal peptides longer than eight amino acids inactivated the depalmitoylated soluble proteins in vitro and in the developing Drosophila eye. These results demonstrate that N-depalmitoylated ShhC requires an N-peptide of a defined minimum length for its signaling function to Ptch.

3.
Cells ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474382

RESUMO

Glypicans (Glps) are a family of heparan sulphate proteoglycans that are attached to the outer plasma membrane leaflet of the producing cell by a glycosylphosphatidylinositol anchor. Glps are involved in the regulation of many signalling pathways, including those that regulate the activities of Wnts, Hedgehog (Hh), Fibroblast Growth Factors (FGFs), and Bone Morphogenetic Proteins (BMPs), among others. In the Hh-signalling pathway, Glps have been shown to be essential for ligand transport and the formation of Hh gradients over long distances, for the maintenance of Hh levels in the extracellular matrix, and for unimpaired ligand reception in distant recipient cells. Recently, two mechanistic models have been proposed to explain how Hh can form the signalling gradient and how Glps may contribute to it. In this review, we describe the structure, biochemistry, and metabolism of Glps and their interactions with different components of the Hh-signalling pathway that are important for the release, transport, and reception of Hh.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Glipicanas/metabolismo , Proteínas de Drosophila/metabolismo , Ligantes , Proteínas Hedgehog/metabolismo , Proteoglicanas de Heparan Sulfato
4.
Biochem Soc Trans ; 51(3): 983-993, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37222258

RESUMO

Patterns of gene expression, cell growth and cell-type specification during development are often regulated by morphogens. Morphogens are signalling molecules produced by groups of source cells located tens to hundreds of micrometers distant from the responding tissue and are thought to regulate the fate of receiving cells in a direct, concentration-dependent manner. The mechanisms that underlie scalable yet robust morphogen spread to form the activity gradient, however, are not well understood and are currently intensely debated. Here, based on two recent publications, we review two in vivo derived concepts of regulated gradient formation of the morphogen Hedgehog (Hh). In the first concept, Hh disperses on the apical side of developing epithelial surfaces using the same mechanistic adaptations of molecular transport that DNA-binding proteins in the nucleus use. In the second concept, Hh is actively conveyed to target cells via long filopodial extensions, called cytonemes. Both concepts require the expression of a family of sugar-modified proteins in the gradient field called heparan sulphate proteoglycans as a prerequisite for Hh dispersal, yet propose different - direct versus indirect - roles of these essential extracellular modulators.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Glicosaminoglicanos/metabolismo , Proteínas Hedgehog/metabolismo , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Drosophila melanogaster/metabolismo
5.
Front Mol Biosci ; 10: 1130064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911531

RESUMO

Morphogens determine cellular differentiation in many developing tissues in a concentration dependent manner. As a central model for gradient formation during animal development, Hedgehog (Hh) morphogens spread away from their source to direct growth and pattern formation in the Drosophila wing disc. Although heparan sulfate (HS) expression in the disc is essential for this process, it is not known whether HS regulates Hh signaling and spread in a direct or in an indirect manner. To answer this question, we systematically screened two composite Hh binding areas for HS in vitro and expressed mutated proteins in the Drosophila wing disc. We found that selectively impaired HS binding of the second site reduced Hh signaling close to the source and caused striking wing mispatterning phenotypes more distant from the source. These observations suggest that HS constrains Hh to the wing disc epithelium in a direct manner, and that interfering with this constriction converts Hh into freely diffusing forms with altered signaling ranges and impaired gradient robustness.

6.
Nat Commun ; 14(1): 758, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765094

RESUMO

Cellular differentiation is directly determined by concentration gradients of morphogens. As a central model for gradient formation during development, Hedgehog (Hh) morphogens spread away from their source to direct growth and pattern formation in Drosophila wing and eye discs. What is not known is how extracellular Hh spread is achieved and how it translates into precise gradients. Here we show that two separate binding areas located on opposite sides of the Hh molecule can interact directly and simultaneously with two heparan sulfate (HS) chains to temporarily cross-link the chains. Mutated Hh lacking one fully functional binding site still binds HS but shows reduced HS cross-linking. This, in turn, impairs Hhs ability to switch between both chains in vitro and results in striking Hh gradient hypomorphs in vivo. The speed and propensity of direct Hh switching between HS therefore shapes the Hh gradient, revealing a scalable design principle in morphogen-patterned tissues.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Heparitina Sulfato/metabolismo , Drosophila/metabolismo , Sítios de Ligação , Drosophila melanogaster/metabolismo , Asas de Animais
7.
FASEB J ; 37(1): e22717, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563024

RESUMO

Bone morphogenetic proteins (BMP) are powerful regulators of cellular processes such as proliferation, differentiation, and apoptosis. However, the specific molecular requirements controlling the bioavailability of BMPs in the extracellular matrix (ECM) are not yet fully understood. Our previous work showed that BMPs are targeted to the ECM as growth factor-prodomain (GF-PD) complexes (CPLXs) via specific interactions of their PDs. We showed that BMP-7 PD binding to the extracellular microfibril component fibrillin-1 renders the CPLXs from an open, bioactive V-shape into a closed, latent ring shape. Here, we show that specific PD interactions with heparin/heparan sulfate glycosaminoglycans (GAGs) allow to target and spatially concentrate BMP-7 and BMP-9 CPLXs in bioactive V-shape conformation. However, targeting to GAGs may be BMP specific, since BMP-10 GF and CPLX do not interact with heparin. Bioactivity assays on solid phase in combination with interaction studies showed that the BMP-7 PD protects the BMP-7 GF from inactivation by heparin. By using transmission electron microscopy, molecular docking, and site-directed mutagenesis, we determined the BMP-7 PD-binding site for heparin. Further, fine-mapping of the fibrillin-1-binding site within the BMP-7 PD and molecular modeling showed that both binding sites are mutually exclusive in the open V- versus closed ring-shape conformation. Together, our data suggest that targeting exquisite BMP PD-binding sites by extracellular protein and GAG scaffolds integrates BMP GF bioavailability in a contextual manner in development, postnatal life, and connective tissue disease.


Assuntos
Proteína Morfogenética Óssea 7 , Glicosaminoglicanos , Proteína Morfogenética Óssea 7/metabolismo , Heparina/metabolismo , Fibrilina-1/metabolismo , Simulação de Acoplamento Molecular , Proteínas Morfogenéticas Ósseas/metabolismo , Heparitina Sulfato/metabolismo , Ligação Proteica , Proteína Morfogenética Óssea 2/metabolismo
8.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34308968

RESUMO

The Sonic hedgehog (Shh) pathway controls embryonic development and tissue homeostasis after birth. Long-standing questions about this pathway include how the dual-lipidated, firmly plasma membrane-associated Shh ligand is released from producing cells to signal to distant target cells and how the resistance-nodulation-division transporter Dispatched 1 (Disp, also known as Disp1) regulates this process. Here, we show that inactivation of Disp in Shh-expressing human cells impairs proteolytic Shh release from its lipidated terminal peptides, a process called ectodomain shedding. We also show that cholesterol export from Disp-deficient cells is reduced, that these cells contain increased cholesterol amounts in the plasma membrane, and that Shh shedding from Disp-deficient cells is restored by pharmacological membrane cholesterol extraction and by overexpression of transgenic Disp or the structurally related protein Patched 1 (Ptc, also known as Ptch1; a putative cholesterol transporter). These data suggest that Disp can regulate Shh function via controlled cell surface shedding and that membrane cholesterol-related molecular mechanisms shared by Disp and Ptc exercise such sheddase control.


Assuntos
Membrana Celular , Colesterol , Proteínas Hedgehog , Proteínas de Membrana Transportadoras/genética , Células Cultivadas , Proteínas Hedgehog/genética , Humanos , Ligantes , Transdução de Sinais
9.
Bioessays ; 43(11): e2100133, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34611914

RESUMO

Two posttranslational lipid modifications present on all Hedgehog (Hh) morphogens-an N-terminal palmitate and a C-terminal cholesterol-are established and essential regulators of Hh biofunction. Yet, for several decades, the question of exactly how both lipids contribute to Hh signaling remained obscure. Recently, cryogenic electron microscopy revealed different modes by which one or both lipids may contribute directly to Hh binding and signaling to its receptor Patched1 (Ptc). Some of these modes demand that the established release factor Dispatched1 (Disp) extracts dual-lipidated Hh from the cell surface, and that another known upstream signaling modulator called Scube2 chaperones the dual-lipidated morphogen to Ptc. By mechanistically and biochemically aligning this concept with established in vivo and recent in vitro findings, this reflection identifies remaining questions in lipidated Hh transport and evaluates additional mechanisms of Disp- and Scube2-regulated release of a second bioactive Hh fraction that has one or both lipids removed.


Assuntos
Proteínas de Drosophila , Proteínas Hedgehog , Colesterol , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais
10.
Biochem Soc Trans ; 49(5): 2455-2463, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515747

RESUMO

Vertebrate and invertebrate Hedgehog (Hh) morphogens signal over short and long distances to direct cell fate decisions during development and to maintain tissue homeostasis after birth. One of the most important questions in Hh biology is how such Hh signaling to distant target cells is achieved, because all Hh proteins are secreted as dually lipidated proteins that firmly tether to the outer plasma membrane leaflet of their producing cells. There, Hhs multimerize into light microscopically visible storage platforms that recruit factors required for their regulated release. One such recruited release factor is the soluble glycoprotein Scube2 (Signal sequence, cubulin domain, epidermal-growth-factor-like protein 2), and maximal Scube2 function requires concomitant activity of the resistance-nodulation-division (RND) transporter Dispatched (Disp) at the plasma membrane of Hh-producing cells. Although recently published cryo-electron microscopy-derived structures suggest possible direct modes of Scube2/Disp-regulated Hh release, the mechanism of Disp-mediated Hh deployment is still not fully understood. In this review, we discuss suggested direct modes of Disp-dependent Hh deployment and relate them to the structural similarities between Disp and the related RND transporters Patched (Ptc) and Niemann-Pick type C protein 1. We then discuss open questions and perspectives that derive from these structural similarities, with particular focus on new findings that suggest shared small molecule transporter functions of Disp to deplete the plasma membrane of cholesterol and to modulate Hh release in an indirect manner.


Assuntos
Proteínas Hedgehog/metabolismo , Lipídeos de Membrana/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Humanos , Dobramento de Proteína
11.
Cancer Rep (Hoboken) ; 4(5): e1394, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33811471

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy of pediatric sarcomas is challenged by the paucity of targetable cell surface antigens. A candidate target in osteosarcoma (OS) is the ganglioside GD2 , but heterogeneous expression of GD2 limits its value. AIM: We aimed to identify mechanisms that upregulate GD2 target expression in OS. METHODS AND RESULTS: GD2 surface expression in OS cells, studied by flow cytometry, was found to vary both among and within individual OS cell lines. Pharmacological approaches, including inhibition of the histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2) and modulation of the protein kinase C, failed to increase GD2 expression. Instead, cell confluency was found to be associated with higher GD2 expression levels both in monolayer cultures and in tumor spheroids. The sensitivity of OS cells to targeting by GD2 -specific CAR T cells was compared in an in vitro cytotoxicity assay. Higher cell confluencies enhanced the sensitivity of OS cells to GD2 -antigen specific, CAR T-cell-mediated in vitro cytolysis. Mechanistic studies revealed that confluency-dependent upregulation of GD2 expression in OS cells is mediated by increased de novo biosynthesis, through a yet unknown mechanism. CONCLUSION: Expression of GD2 in OS cell lines is highly variable and associated with increasing cell confluency in vitro. Strategies for selective upregulation of GD2 are needed to enable effective therapeutic targeting of this antigen in OS.


Assuntos
Neoplasias Ósseas/metabolismo , Técnicas de Cultura de Células/normas , Gangliosídeos/metabolismo , Osteossarcoma/metabolismo , Linfócitos T/imunologia , Benzamidas/farmacocinética , Compostos de Bifenilo/farmacocinética , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Brefeldina A/farmacologia , Citotoxicidade Imunológica/imunologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Morfolinas/farmacocinética , Osteossarcoma/imunologia , Osteossarcoma/patologia , Inibidores da Síntese de Proteínas/farmacologia , Piridonas/farmacocinética , Propriedades de Superfície , Células Tumorais Cultivadas
12.
Dev Cell ; 54(5): 572-573, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32931749

RESUMO

Lipidated morphogens can spread within tissues to regulate cell fate during development or tissue repair. How these insoluble molecules reach distant target cells remains unclear. Reporting in Nature, McGough et al. (2020) reveal the secret of how the cell-surface proteoglycan Dally-like-protein (Dlp) promotes long-range signaling of the palmitoylated morphogen Wingless.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glipicanas , Lipídeos , Asas de Animais/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
13.
J Dev Biol ; 8(3)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664575

RESUMO

Disruption of the Heparan sulfate (HS)-biosynthetic gene N-acetylglucosamine N-Deacetylase/N-sulfotransferase 1 (Ndst1) during nervous system development causes malformations that are composites of those caused by mutations of multiple HS binding growth factors and morphogens. However, the role of Ndst function in adult brain physiology is less explored. Therefore, we generated mice bearing a Purkinje-cell-specific deletion in Ndst1 gene function by using Cre/loxP technology under the control of the Purkinje cell protein 2 (Pcp2/L7) promotor, which results in HS undersulfation. We observed that mutant mice did not show overt changes in the density or organization of Purkinje cells in the adult cerebellum, and behavioral tests also demonstrated normal cerebellar function. This suggested that postnatal Purkinje cell development and homeostasis are independent of Ndst1 function, or that impaired HS sulfation upon deletion of Ndst1 function may be compensated for by other Purkinje cell-expressed Ndst isoforms. To test the latter possibility, we additionally deleted the second Purkinje-cell expressed Ndst family member, Ndst2. This selectively abolished reproductive capacity of compound mutant female, but not male, mice, suggesting that ovulation, gestation, or female reproductive behavior specifically depends on Ndst-dependent HS sulfation in cells types that express Cre under Pcp2/L7 promotor control.

14.
Elife ; 92020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515730

RESUMO

Myelin destruction is followed by resident glia activation and mobilization of endogenous progenitors (OPC) which participate in myelin repair. Here we show that in response to demyelination, mature oligodendrocytes (OLG) bordering the lesion express Ndst1, a key enzyme for heparan sulfates (HS) synthesis. Ndst1+ OLG form a belt that demarcates lesioned from intact white matter. Mice with selective inactivation of Ndst1 in the OLG lineage display increased lesion size, sustained microglia and OPC reactivity. HS production around the lesion allows Sonic hedgehog (Shh) binding and favors the local enrichment of this morphogen involved in myelin regeneration. In MS patients, Ndst1 is also found overexpressed in oligodendroglia and the number of Ndst1-expressing oligodendroglia is inversely correlated with lesion size and positively correlated with remyelination potential. Our study suggests that mature OLG surrounding demyelinated lesions are not passive witnesses but contribute to protection and regeneration by producing HS.


Assuntos
Doenças Desmielinizantes/metabolismo , Heparitina Sulfato/metabolismo , Oligodendroglia/metabolismo , Remielinização , Sulfotransferases/metabolismo , Animais , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Deleção de Genes , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Lisofosfatidilcolinas , Ativação de Macrófagos , Camundongos Transgênicos , Microglia/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Sulfotransferases/genética , Regulação para Cima
15.
J Inherit Metab Dis ; 43(2): 334-347, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31587315

RESUMO

Fabry disease (FD) is a lysosomal storage disease, treatable by enzyme replacement therapy (ERT) that substitutes deficient α-galactosidase A (AGAL). The formation of neutralising anti-drug antibodies (ADA) inhibiting AGAL activity during infusion is associated with disease progression in affected male patients. In this study we analysed if ADAs also inhibit endothelial enzyme uptake as well as intracellular enzyme activity. Therefore, fluorescence-labelled AGAL in combination with ADA-positive sera from FD patients (n = 8) was used to analyse enzyme uptake in endothelial and FD-specific cells. Furthermore, immune adsorption and a comprehensive ADA epitope mapping were performed. Pre-incubation of AGAL with ADAs significantly inhibited intracellular enzyme activity, which was rescued by immune adsorption (both P < .01). ADAs from some patients also inhibited enzyme uptake. ADA epitope mapping identified an epitope at position 121 to 140 aa potentially responsible for uptake inhibition for these patients. Further analyses revealed the presence of stable AGAL/ADA-immune complexes at pH 4.5 and decreased intracellular enzyme activity in endothelial cells (P < .001). Finally, the pre-incubation of AGAL with ADAs resulted in a reduced depletion of intracellular globotriaosylceramide in patient-derived AGAL-deficient cells, demonstrating a direct negative impact of ADAs on intracellular clearance. Neutralising ADAs may not only inhibit infused AGAL activity, but according to their epitopes can also inhibit endothelial AGAL uptake. Indeed, internalised AGAL/ADA-complexes may not dissociate, underlining the importance of novel therapeutic approaches for ADA reduction and prevention to increase therapy efficiency in affected patients.


Assuntos
Anticorpos Neutralizantes/imunologia , Terapia de Reposição de Enzimas , Doença de Fabry/imunologia , alfa-Galactosidase/imunologia , Adulto , Anticorpos Neutralizantes/biossíntese , Ensaio de Imunoadsorção Enzimática , Doença de Fabry/sangue , Doença de Fabry/tratamento farmacológico , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , alfa-Galactosidase/sangue , alfa-Galactosidase/uso terapêutico
16.
Front Cell Dev Biol ; 8: 615698, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33511123

RESUMO

Hedgehog (Hh) morphogens are involved in embryonic development and stem cell biology and, if misregulated, can contribute to cancer. One important post-translational modification with profound impact on Hh biofunction is its C-terminal cholesteroylation during biosynthesis. The current hypothesis is that the cholesterol moiety is a decisive factor in Hh association with the outer plasma membrane leaflet of producing cells, cell-surface Hh multimerization, and its transport and signaling. Yet, it is not decided whether the cholesterol moiety is directly involved in all of these processes, because their functional interdependency raises the alternative possibility that the cholesterol initiates early processes directly and that these processes can then steer later stages of Hh signaling independent of the lipid. We generated variants of the C-terminal Hh peptide and observed that these cholesteroylated peptides variably impaired several post-translational processes in producing cells and Hh biofunction in Drosophila melanogaster eye and wing development. We also found that substantial Hh amounts separated from cholesteroylated peptide tags in vitro and in vivo and that tagged and untagged Hh variants lacking their C-cholesterol moieties remained bioactive. Our approach thus confirms that Hh cholesteroylation is essential during the early steps of Hh production and maturation but also suggests that it is dispensable for Hh signal reception at receiving cells.

17.
Molecules ; 24(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018591

RESUMO

Sonic hedgehog (Shh) signaling plays a tumor-promoting role in many epithelial cancers. Cancer cells produce soluble a Shh that signals to distant stromal cells that express the receptor Patched (Ptc). These receiving cells respond by producing other soluble factors that promote cancer cell growth, generating a positive feedback loop. To interfere with reinforced Shh signaling, we examined the potential of defined heparin and heparan sulfate (HS) polysaccharides to block Shh solubilization and Ptc receptor binding. We confirm in vitro and in vivo that proteolytic cleavage of the N-terminal Cardin-Weintraub (CW) amino acid motif is a prerequisite for Shh solubilization and function. Consistent with the established binding of soluble heparin or HS to the Shh CW target motif, both polysaccharides impaired proteolytic Shh processing and release from source cells. We also show that HS and heparin bind to, and block, another set of basic amino acids required for unimpaired Shh binding to Ptc receptors on receiving cells. Both modes of Shh activity downregulation depend more on HS size and overall charge than on specific HS sulfation modifications. We conclude that heparin oligosaccharide interference in the physiological roles of HS in Shh release and reception may be used to expand the field of investigation to pharmaceutical intervention of tumor-promoting Shh functions.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas Hedgehog/química , Heparina/farmacologia , Heparitina Sulfato/farmacologia , Receptor Patched-1/genética , Receptores de Superfície Celular/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Linhagem Celular Tumoral , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Heparina/química , Heparitina Sulfato/química , Humanos , Modelos Moleculares , Receptor Patched-1/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Solubilidade , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
18.
Nat Commun ; 10(1): 953, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814516

RESUMO

Although hundreds of cytosolic or transmembrane molecules form the primary cilium, few secreted molecules are known to contribute to ciliogenesis. Here, homologous secreted metalloproteases ADAMTS9 and ADAMTS20 are identified as ciliogenesis regulators that act intracellularly. Secreted and furin-processed ADAMTS9 bound heparan sulfate and was internalized by LRP1, LRP2 and clathrin-mediated endocytosis to be gathered in Rab11 vesicles with a unique periciliary localization defined by super-resolution microscopy. CRISPR-Cas9 inactivation of ADAMTS9 impaired ciliogenesis in RPE-1 cells, which was restored by catalytically active ADAMTS9 or ADAMTS20 acting in trans, but not by their proteolytically inactive mutants. Their mutagenesis in mice impaired neural and yolk sac ciliogenesis, leading to morphogenetic anomalies resulting from impaired hedgehog signaling, which is transduced by primary cilia. In addition to their cognate extracellular proteolytic activity, ADAMTS9 and ADAMTS20 thus have an additional proteolytic role intracellularly, revealing an unexpected regulatory dimension in ciliogenesis.


Assuntos
Proteínas ADAMTS/metabolismo , Proteína ADAMTS9/metabolismo , Cílios/metabolismo , Cílios/ultraestrutura , Proteínas ADAMTS/deficiência , Proteínas ADAMTS/genética , Proteína ADAMTS9/deficiência , Proteína ADAMTS9/genética , Animais , Linhagem Celular , Endocitose , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Modelos Biológicos , Mutação , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Proteólise , Transdução de Sinais , Versicanas/genética , Versicanas/metabolismo , Saco Vitelino/embriologia , Saco Vitelino/metabolismo
19.
Development ; 145(18)2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242104

RESUMO

Metazoan Hedgehog (Hh) morphogens are essential regulators of growth and patterning at significant distances from their source, despite being produced as N-terminally palmitoylated and C-terminally cholesteroylated proteins, which firmly tethers them to the outer plasma membrane leaflet of producing cells and limits their spread. One mechanism to overcome this limitation is proteolytic processing of both lipidated terminal peptides, called shedding, but molecular target site requirements for effective Hh shedding remained undefined. In this work, by using Drosophila melanogaster as a model, we show that mutagenesis of the N-terminal Cardin-Weintraub (CW) motif inactivates recombinant Hh proteins to variable degrees and, if overexpressed in the same compartment, converts them into suppressors of endogenous Hh function. In vivo, additional removal of N-palmitate membrane anchors largely restored endogenous Hh function, supporting the hypothesis that proteolytic CW processing controls Hh solubilization. Importantly, we also observed that CW repositioning impairs anterior/posterior compartmental boundary maintenance in the third instar wing disc. This demonstrates that Hh shedding not only controls the differentiation of anterior cells, but also maintains the sharp physical segregation between these receiving cells and posterior Hh-producing cells.


Assuntos
Motivos de Aminoácidos/genética , Padronização Corporal/genética , Olho Composto de Artrópodes/embriologia , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Proteínas Hedgehog/genética , Asas de Animais/embriologia , Animais , Diferenciação Celular , Lipoilação/fisiologia , Palmitatos/metabolismo , Transdução de Sinais/genética
20.
J Dev Biol ; 6(1)2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29615552

RESUMO

All Hedgehog (Hh) proteins signal from producing cells to distant receiving cells despite being synthesized as N-and C-terminally lipidated, membrane-tethered molecules. To explain this paradoxical situation, over the past 15 years, several hypotheses have been postulated that tie directly into this property, such as Hh transport on cellular extensions called cytonemes or on secreted vesicles called lipophorins and exosomes. The alternative situation that tight membrane association merely serves to prevent unregulated Hh solubilization has been addressed by biochemical and structural studies suggesting Hh extraction from the membrane or proteolytic Hh release. While some of these models may act in different organisms, tissues or developmental programs, others may act together to specify Hh short- and long-range signaling in the same tissues. To test and rank these possibilities, we here review major models of Hh release and transport and hypothesize that the (bio)chemical and physical properties of firmly established, homologous, and functionally essential biochemical Hh modifications are adapted to specify and determine interdependent steps of Hh release, transport and signaling, while ruling out other steps. This is also described by the term "congruence", meaning that the logical combination of biochemical Hh modifications can reveal their true functional implications. This combined approach reveals potential links between models of Hh release and transport that were previously regarded as unrelated, thereby expanding our view of how Hhs can steer development in a simple, yet extremely versatile, manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...